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i. e. ,  without the hot gas  touching the body. 

ratio ac ross  the shock a relatively simple analysis can be performed. 

culations covering various representative cases are exhibited; the validity 

and significance of these calculations a r e  discussed. 

Assuming a l a rge  compression 

Cal- 

I 

I 
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NOMENCLATURE 

various coordinates 

velocity components 

pres s u r e  

density 

magnetic field 

various magnetic field components 

current density 

conductivity 

s t ream function 

interaction paramet  e r 

limiting shock compression ratio 

various distances 

curvature 

reference p res  su r  e gradient 

magnetic field line parameter  

integral quantities 

dummy variable 
auxiliary quantities 

auxiliary functions 

hyper g eome t r i c function 

reference quantity 

f r ee  s t ream value 

matching 

deceleration layer  
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I. INTRODUCTION 

The interaction between a hypersonic flow and a fixed magnetic 

field is  of interest  in  a number of connections. While such an  interaction 

can take place in a variety of physical conditions, we shall, in  this paper, 

consider only the case  in which the magnetic Reynolds number is negligibly 

low. 

sider the smallness of the magnetic Reynolds number as due to a low value 

of the conductivity of the working gas .  One grea t  simplification which r e -  

sults f rom considering the magnetic Reynolds number to  be low is that the 

complicated wave propagation effects characterist ic of magnetohyd r ody - 
namics at high vagnet ic  Reynolds number disappear in our limit. 

we can regard our flows as entirely aerodynamic in structure,  although 

differing f rom traditional types of aerodynamic flows in that the applied 

forces  act  through a volume rather  than at surfaces.  

ing the magnetic Reynolds number small, we shall suppose that the con- 

ductivity of our gas will be "turned on" by a strong bow shock wave. This 

as sumption corresponds to  the conditions encountered in hypersonic flight 

in planetary atmospheres.  We shall see later on that it will be legitimate 

to consider this conductivity as a constant over an interesting par t  of the 

flow field. 

It is most appropriate (for the applications we have in mind) to con- 

In fact 

In addition to assum- 

Now, the general  conditions described above have formed the basis 

of quite a few studies. Fo r  our purposes we can distinguish two groups of 

such studies, namely, those in which the flow is considered to  be pr imari ly  

aerodynamic and is  modified by the magnetic field, and those in which the 

flow is dominated by the magnetic interaction and the presence of a body is 

of secondary importance. 

la t ter  category, and wil l  emphasize i n  particular those flows in which 

forces  exerted at solid surfaces  play a negligible role. 

be useful briefly to  review both categories of studies in order  to establish 

a perspective. 

We shall be concerned in this paper with the 

However, it will 
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A group of papers by Kemp, Bush and Lykoudis3 deals with the 

hypersonic flow of gas over a body and the modification of this flow by a 

magnetic field. 

in the choice of method, the actual problem being in all cases  just  about 

the same. 

that the magnetic forces a r e  l e s s  than those exerted at the surface of the 

body. Bush, however, does suggest the possibility of the opposite extreme. 

The results of all these papers a r e  given in t e r m s  of calculated modifica- 

tions of the aerodynamic flow. 

reduce the stagnation point velocity gradient, to increase the shock stand- 

off distance, and therefore to  reduce the convective stagnation point heat 

t ransfer .  

The points of difference between these papers  a r e  largely 

While not explicitly stated in  all the papers,  the general  idea i s  

Thus the effect of the magnetic field is to 

The drag is largely unaffected. 
4 A different approach is given in a paper of Levy and Petschek. 

Here  a ra ther  special two-dimensional problem i s  studied with a view to 

describing a flow in which the body is entirely absent. 

istence of such flows was demonstrated. 

ly  cannot be stated with reference to  any standard aerodynamic flow. Ra- 

ther,  such parameters  a s  the location of the shock a r e  given in t e rms ,  for  

instance, of the current  flowing in  the magnet. An important feature of 

this type of flow i s  the existence of an inner boundary to the flow behind 

which the gas density is  very low, 

inside this inner zone, i t  is essentially not in contact with the flow at all, 

and the convective heat t ransfer  to it should be very small. 

The nature and ex- 

The resul ts  of such a study c lear -  

If the body which houses the magnet is  

In the present paper we attempt to combine features of both the above 

problems. 

the first  group of papers, but we use  the methods of Levy and Petschek 

and concentrate strongly on the case  in which the body plays a negligible 

role  in  the flow. 

in the f i r s t  group of papers a r e  resolved, and the flow corresponding to the 

limit discussed by Bush is extensively described. More particularly, in  

the next section we specialize the configuration to be studied and descr ibe 

the main outlines of our analysis. In subsequent sections we will analyze 

the flow in grea te r  detail, and discuss  particularly the limiting cases  in 

The geometry we study is the physically realist ic geometry of 

In the course of the work certain discrepancies existing 
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which the flow is principally supported by either the magnetic field o r  the 

body. In the last section we will draw some general conclusions from our 

study, and also descr ibe some of the physical limitations on the validity of 

our analysis. 
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11. GENERAL DESCRIPTION O F  THE F L O W  

We consider the hypersonic flow of a cold g a s  past a two-dimensional 

or  axially symmetric body containing a two o r  three-dimensional magnetic 

dipole with its axis oriented parallel  to the flow. 

this flow a r e  illustrated in Fig .  1. 

g a s  ahead of the object; behind this shock the gas is weakly conducting. 

the axially symmetric case the current  flow (in the absence of Hall effect) 

is in the azimuthal direction and it follows that & . ,E = 0. 

sional case  this condition can also be achieved if  we suppose the body to  

form a ring whose major radius i s  much greater than any dimension of its 

c r o s s  section. 

where it is not satisfied, energy can be t ransferred from one streamline 

to another (one acting as a "generator, ' I  the other as a "motor"). 

t ransfers  of energy cannot take place in  the absence of induced o r  applied 

electric fields; thus, i n  our case, each streamline i s  isolated energetically 

and, therefore, has a constant total enthalpy. We neglect heat conduction 

and viscosity since the viscous Reynolds number is high; when there  is  no 

body in the flow there  will not even be a thin viscous boundary layer.  Since 

the total  enthalpy is constant along each streamline, it is constant through- 

out the flow. 

mal par t  of the shock, for example) the static enthalpy will be approximately 

constant. 

electrical  conductivity may be treated as constant when the enthalpy is con- 

stant, even though the gas may undergo a considerable expansion. 

assumption will allow us  to take the conductivity as constant through a 

la rge  par t  of the flow. 

that the Hall effect may be neglected; in the last section we shall estimate 

limits to  the validity of this assumption. 

The general  features of 

A strong shock will be formed in the 

In 

In the two dimen- 

The importance of this condition is due to  the fact that 

Such 

In the region where the Mach number is low (behind the nor- 

We shall assume that the properties of the gas  a r e  such that the 

This 

We also assume that the gas conditions a r e  such 

The statement that the gas  is weakly conducting behind the shock is 

to be taken to mean that the magnetic Reynolds number is low. The general  
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F i g .  1 Il lustrates the principal features of the flow to be expected when 
S 1. The conductivity i s  zero ahead of the shock. 
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features of flows at low magnetic Reynolds numbers have been outlined 

elsewhere, but fo r  the sake of completeness we include a brief description 

here .  When the magnetic Reynolds number i s  low, the currents  induced in 

the gas give r i s e  to  magnetic fields which a r e  negligible in comparison to 

those due t o  the pr imary field coils. 

in  the flow can be calculated a s  though it were due only to the field coils. 

At the same  time, in  order  to  have a substantial exchange of momentum be- 

tween the field and the flow the magnetic p re s su re  must be much grea te r  

than the dynamic pressure  of the flow. More detailed analysis shows that, 

when a substantial interaction i s  present (which is certainly the case when 

there  is a strong shock), the product of the magnetic Reynolds number and 

the rat io  of the magnetic to dynamic pressures  must be of order  unity. We 

call  this product the interaction parameter,  and denote i t  by S. Of course, 

careful attention must be paid to  the designation of the characterist ic quan- 

t i t ies that go into it. 

Thus, the magnetic field a t  any point 

The geometrical configuration shown in Fig. 1 is generically the same  

as  that t reated by Bush et al. 

dimensional o r  axially symmetric dipole whose axis is in the flow direction. 

The body will generally be blunt. 

of a rb i t ra ry  c r o s s  section, but having a plane of symmetry in which the 

dipole i s  located. 

met r ic  shapes. In general we do not assume that we have circular  cylin- 

d e r s  o r  spheres,  although we could t r ea t  these shapes as special cases .  

The location of the dipole is, within the limitations of symmetry, arbi t rary,  

except that i t  is supposed not to be right at the stagnation point of the body. 

Also, we do not make any a pr ior i  assumption about the shape o r  the loca- 

tion of the shock. 

The magnetic field will be that due to  a two- 

In two dimensions we consider cylinders 

In three dimensions we consider a rb i t ra ry  axially sym- 

We define E to  be the reciprocal of the limiting compression ratio 

ac ross  strong shocks f o r  the gas and conditions under study. 

ly a small number in practice, and we shall assume throughout the analysis 

that E << 1. Now, in aerodynamics, this assumption leads directly to the 

flow picture generally (if somewhat roughly) described a s  Newtonian. In 

It is frequent- 

-7 - 



the analysis of Newtonian flows, the shock layer (the thin region between 

the shock and the body) is  generally not resolved in detail. 
5 and momentum fluxes a r e  balanced, however, in various different ways. 

Now f o r  magnetohydrodynamics, this description is not adequate since the 

detailed velocity of the gas ac ross  the field lines must  be known in order  to 

find the resultant magnetohydrodynamic body force.  We must  therefore use 

a Newtonian description of the flow which nevertheless provides a consistent 

representation of the flow velocity, and especially the component of the 

flow velocity normal to the magnetic field. 

The gross  m a s s  

We define the deceleration layer ( see  F i g .  1) as the region just  be- 

hind the shock for which the velocity component parallel  to the shock is 

la rger  than the component normal to the shock. (The deceleration layer 

reduces, when there  i s  no magnetic interaction, to the aerodynamic shock 

layer .  

l a te r  on. ) Although this definition breaks down near  the place where the 

shock i s  normal, i t  can be extended i n a  consistent manner to the stagnation 

streamline by using the gradient of the velocity component parallel  to the 

shock, multiplied by the radius of curvature of the shock. The important 

thing to conclude from this definition i s  that, due to  the requirement of con- 

tinuity, the deceleration layer a s  defined i s  thin. In fact, since the ratio 

of the velocity components perpendicular and parallel  to  the shock is on the 

order  of E, the continuity equation tells  us that the thickness of the layer i s  

approximately E r  where r is the radius of curvature of the shock. Note 

that the demonstration that the deceleration layer  is thin depends only on the 

properties of shocks and the conservation of m a s s .  

The reason for this choice of terminology will become apparent 

C’ C 

Now toward the front of the deceleration layer ,  near  the shock, the 

pressure  gradient along the layer exer ts  a negligible effect  on the flow. In 

the aerodynamic case,  this means that the tangential component of velocity 

of each fluid particle is  conserved a s  i t  follows a streamline: This in turn 

means that a s  we t r ave r se  the layer  f rom front to back, we encounter pa r -  

t icles carrying l e s s  and l e s s  tangential velocity. 

theory, the dividing (stagnation) s t reamline would have no tangential veloc- 

ity. This conclusion is  incorrect  and, in  fact, we have to take account of 

In the limit, on this 
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the p re s su re  gradient along the layer  f o r  those particles which crossed the 

shock a t  an angle l e s s  than about 

quently form the back of the layer.  

ve r se  p re s su re  gradient into account in this region, we consider how to 

calculate it. Now the t ransverse  pressure gradient i s  clearly known at 

the shock. Fo r  the aerodynamic case, the only effect capable of changing 

this p re s su re  gradient ac ross  the layer  i s  the centrifugal force which acts 

outward, and hence reduces the pressure  a t  the back of the layer;  this r e -  

duction in pressure  away f rom the stagnation point has the effect of increas-  

ing the magnitude of the stagnation point pressure  gradient. 

important contributor to the centrifugal effect i s  the high velocity gas at 

the front of the layer  and it is precisely this gas which i s  unaffected by the 

t ransverse  p re s su re  gradient. Therefore, we can calculate the centrifugal 

effect neglecting the effect of the pressure  gradient and then find the change 

in  the p re s su re  gradient due to the centrifugal effect. Put another way, we 

f i r s t  calculate the flow in the layer neglecting the effect of the tangential 

p re s su re  gradient. 

a r e  low, so that the centrifugal effect can be deduced from them without 

substantial e r ro r .  

layer  a s  modified by the centrifugal effect. 

p re s su re  gradient calculated in this way at the back of the layer  and t r ea t  

this value a s  though it were correct  throughout the layer .  

cor rec t  near the shock, where it has no effect, but i s  co r rec t  a t  the back, 

where i t  i s  important. We shall see later on how this procedure, general-  

ized to  the magnetohydrodynamic cas  e, covers correctly the aerodynamic 

limit. 

from the normal and which subse- 

Knowing that we have to take the t rans-  

But the only 

The resulting velocities a r e  incorrect only where they 

We then calculate the pressure gradient throughout the 

The final step is to  evaluate the 

This step i s  in- 

The extension of this scheme to the magnetohydrodynamic case  pro- 

ceeds as follows: We commence, a s  before, by neglecting the p re s su re  

gradient in the t ransverse  momentum equation. The tangential velocity of 

each particle i s  now, however, not constant along a streamline, but i s  r e -  

duced by the interaction with the magnetic field. 

to  an interesting situation; apar t  from extremely small  values of the in te r -  

action parameter  (just  how small  wil l  be discussed in due course) the t rans-  

v e r s e  component of the velocity a t  some distance back from shock may fall 

to  low values before we reach the body (the body is where the radial  velocity 

(See F ig .  1). This leads 
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vanishes). 

comparable in magnitude is the back of the deceleration layer .  

the magnetohydrodynamic case,  there  may be an outflow from the back of 

the deceleration layer .  There  is, therefore,  an additional flow region be- 

hind the deceleration layer  which will have to be studied in order  to com- 

plete the solution to the whole flow problem. 

this region both velocity components a r e  of order  cum, we shall re fe r  to i t  

a s  the "slow flow region. ' '  Since the Mach number is very low, the convec- 

tion of momentum in it will be negligible compared to the p re s su re  gradients 

and the magnetohydrodynamic forces.  

fore determines the nature of the flow. 

the slow flow region a r e  important. First, since the velocity components 

in both directions a r e  comparable, the equation of continuity shows that the 

dimensions of the slow flow region a r e  roughly comparable in a l l  directions.  

Secondly, since there  is no magnetohydrodynamic force along the field lines 

the pressure  is a given constant for each field line. 

By our definition, the place where the two components a r e  

Thus, in 

In view of the fact that i n  

The balance of these las t  two there-  

Two additional remarks  concerning 

Now, in order  to solve the flow in the slow flow region, we must 

know, from study of the deceleration layer,  the p re s su re  on each field line, 

and the flow velocity ac ross  the boundary between the regions. 

shown how to calculate the la t ter  and it remains to determine the p re s su re  

at  the back of the layer .  

ly analogous to the method used in the aerodynamic case.  

forces normal  to the deceleration layer capable of changing the p re s su re  

between the front and the back a r e  the centrifugal force (as  before) and, in 

addition, the normal component of the magnetohydrodynamic force.  Once 

again, both of these a r e  significant only where the tangential velocity is 

high, and we can therefore use  the tangential velocity profile calculated 

neglecting the p re s su re  gradient to find the net loss  of p re s su re  through the 

layer .  This procedure is quite straightforward, but can give r i s e  to effects 

of different signs. 

duced below its aerodynamic value by the magnetic field. 

fugal effect is always l e s s  than in the aerodynamic case.  

the normal component of the magnetohydrodynamic force can have either 

We have 

To accomplish this we proceed in a manner entire- 

We note that the 

In the first place the tangential velocity is always r e -  

Thus, the centr i -  

On the other hand, 
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sign. 

( in  concert  with the centrifugal force)  o r  inward (against the centrifugal 

force)  according a s  the field lines appear locally to diverge from a point 

ahead of o r  behind the center of curvature of the deceleration layer.  

remarks  explain the difference in  the sign of the change in the body p res su re  

gradient in  the work of Kemp and Bush. 

curvature of the deceleration layer. 

netic force normal to the deceleration layer. 

su re  i s ,  then, that the centrifugal effect is reduced. As a result ,  the p r e s -  

s u r e  a t  the body is higher than in the aerodynamic case ,  and the stagnation 

point p re s su re  gradient is reduced. Bush, on the other hand, has a dipole 

at the center of curvature of the shock layer. Thus, the magnetic force is 

outward, the p re s su re  on the body is reduced, and the stagnation point 

p re s su re  gradient is increased. 

Since i t  is always normal to the field l ines,  the force  ac ts  outward 

These 

Kemp has a pole at the center of 

There is thus no component of the mag- 

The only effect on the p re s -  

While Kemp, Bush and Lykoudis refer  exclusively to  the p re s su re  

gradient on the body, our resul ts  refer  quite generally to the back of the 

deceleration layer,  that is ,  whether or  not it i s  separated f rom the body by 

a slow flow region. 

above which a slow flow region intervenes between the deceleration layer  

and the body. Before doing this, however, it is  convenient to define more  

precisely the interaction parameter  to  be used throughout the paper. 

l e t  

We now estimate the value of the interaction parameter  

We 

S 

where Bo is the field strength at the normal  point of the shock. 

c lear  that a s  long a s  the magnetohydrodynamic force has an effect on the 

t ransverse  ( o r  tangential) momentum equation comparable to that of the 

tangential p ressure  gradient, the deceleration layer  will be only slightly 

changed from the aerodynamic case.  This is because, a s  we have seen, 

the tangential p re s su re  gradient does not affect the aerodynamic shock 

layer  very much anyway. 

Now i t  is 

This condition gives us: 

-11- 



where the left hand side i s  the character is t ic  magnetohydrodynamic body 

force in the t ransverse  direction and the right hand side is a p re s su re  grad-  

ient made up from a change in p re s su re  comparable to f r ee  s t r eam dynamic 

distributed over a distance like the radius of curvature of the deceleration 

layer .  Using the definition ( 2 .  l ) ,  ( 2 .  2) becomes 

S x ' E  (2 .  3) 

On the other hand, when the magnetic force is capable of stopping the t rans-  

v e r s e  flow in the deceleration layer,  

will not reach zero  in the layer ,  and 

sary.  This condition occurs when 

N 
2 ouooBo - 

we can expect that the normal velocity 

that a slow flow region will be neces-  

(2 .4)  

The r igh t  hand side here  is the volume force  necessary to stop gas  having 

densitypm/'E and velocity uoo during the t ime it is in the deceleration layer,  

namely r /urn. Using (2 .  l ) ,  (2 .  4) becomes 
C 

S x l  (2 .5 )  

Between these l imits,  then, the slow flow region makesitsappearance.  We 

shall see la te r ,  on the basis of more  detailed considerations, that the c r i -  

t ical  value of S is  given by 

When SE- '/'<< 1 the 

the pressure  gradient. We 

magnetic field has  l e s s  effect on the flow than 

can, therefore,  make the following statements 

about the flow in this regime: The flow takes place entirely within a decel-  

eration layer  whose thickness will be slightly greater  than, but of the same 

general o rder  of magnitude as the aerodynamic shock layer  on the same 

body, i. e. E r  . Likewise, the stagnation point velocity gradient continues 

to be on the order  of 

interaction. 

of the flow in this reg ime with the corresponding features of the pure aero-  

dynamic flow around the same  body. 

C -1 , but is slightly reduced by the magnetic 
C 

In general  it will always be reasonable to compare the features 
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The situation pertaining when S >>c1l2 is entirely different. The 

deceleration layer  is  now no longer in contact with the body, but is sepa- 

rated from it by the slow flow region. 

for assuming that the layer  is concentric with the body, or ,  for that mat ter ,  

with the dipole. Whatever the geometry, the type of flow we expect is i l lus- 

t ra ted schematically i n  F i g .  1 .  The pressure at the back of the decelera- 

tion layer  is reduced by the combined action of the centrifugal and magnetic 

forces.  At the same time the component of velocity parallel  to the deceler- 

ation layer  at the back of the layer r i s e s  as we proceed away from the s tag-  

nation streamline; the gradient of this velocity component where the decel- 

eration layer  is normal is EU r , but it will subsequently grow more  

rapidly when the angle between the field and the deceleration layer becomes 

There is no longer any justification 

- 1  
* c  

small. At some point it will reach sonic velocity E 1 /ZU oo. At this point the 

flow in the "slow flowregion" can no longer be slow. 

flow that entered the slow flow region near the axis can be expected to e s -  

cape at higher speed in the general  direction of the magnetic field. 

analysis of this flow is beset with a number of difficulties. 

velocity r i s e s ,  the temperature and hence the conductivity will fall; further- 

more,  the density will a lso be lower away from the stagnation streamline; 

at some point nonequilibrium, Hall, and ion-slip effects must  all become 

important. Two methods a r e  available at this stage. The first, used by 

Bush (and others) is  to introduce the ad hoc assumption that the dipole is 

at the center of curvature of the shock wave. No justification of this as- 

sumption seems possible, but it does lead to a definite problem which can 

be solved without discussing the tr icky matter of the nature of the flow 

near  the sonic points. The second alternative is to construct a satisfactory 

model of the flow out to the sonic point. In this paper we adopt the second 

alternative; we shall see, however, that in order  to construct this flow we 

a r e  obliged to  make assumptions about gas properties that a r e  not too well 

justified in practice.  An important result  of our analysis will be a reason- 

able degree of agreement between our results and those of Bush. Since the 

resul ts  a r e  obtained by different methods, it is felt that each lends support 

to the other.  

On the other hand, 

The 

Thus, as the 

I 

I 

I 
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The model of the flow away from the stagnation streamline is then 

as follows: Gas that enters  the slow flow region near  the axis has  a charac-  

terist ic velocity cum. It is accelerated outward along the field to  sonic 
. velocity E 1 /zu 03. Assumin the motion to be isothermal,  the density will 

of its stagnation value, so that the a r e a  r e -  -172 decrease only to about e 

quired to pass  the sonic flow out a t  sonic velocity is only about 

a r e a  over which it entered. 

At the  same  time, the velocity at the back of the deceleration layer can be 

sonic when the j x B force i s  reduced to something comparable to the p re s -  

s u r e  gradient. 

the magnetic field normal to the layer must  be reduced to a fraction E 

of i ts  value at  the stagnation point. 

tially parallel to the magnetic field. 

the layer is much reduced by the centrifugal effect. 

certain point along the layer 

field; 2)  the p re s su re  at the back of the layer  is reduced to nothing by the 

centrifugal effect, and 3) the slow flow gas,  having been accelerated to 

sonic velocity along the field, constitutes a thin back edge at  the back of the 

deceleration layer .  These features a r e  shown schematically in Fig. 1.  A 

particularly important feature of Fig.  1 is the existence of a limiting field 

line which is a l so  a streamline,  beyond which the flow does not penetrate. 

A s  can be seen, this implies that only a definite a r e a  near  the stagnation 

point of the body is in contact with the flow, and that away f rom this point 

the pressure  and density, and hence the momentum and heat t ransfer red  to 

the body, rapidly decline, reaching zero where the body intersects  the 

limiting field line. 

of the 

This a r e a  on our assumption is very small .  

When this happens, it can be shown that the component of 
1 /4 

Thus, the deceleration layer  is essen-  

Finally, the p re s su re  at  the back of 

We suppose that, a t  a 

1) the layer  becomes parallel  to the magnetic 

It can be seen that the model of the flow just  described depends fo r  

i t s  validity on the assumption 

than the simple E<< 1 and <is, in fact, not very well satisfied in practice.  

This r emark  clearly limits the validity of our model. 

<< 1. This assumption is  far stronger 

All of the above r emarks  apply to the case  SE - ' l2>>l.  Throughout 

most of this range, a body is present,  a s  shown in Fig.  1. However, for 

sufficiently large S, of order  unity, we reach a very interesting situation 
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in  which the body vanishes altogether (except for the stagnation point! ) and 

the whole drag  of the flow field is felt by the magnetic field coil. 

this point, as observed by Bus%, no further increase in S is possible. An 

increase  of the magnet strength, fo r  instance, resul ts  only in the shock 

moving fur ther  away from the magnet. Obviously, this situation, i f  it can 

be realized, offers prospects of heat transfer reduction greatly in excess 

of those demonstrable in the range SC- ’ /~<<  1 .  The situation does, how- 

ever, depend to some extent on the validity of our model. While this im- 

portant result  may be considered to  be implicit in the work of Bush, it was 

not pointed out there;  clearly, in  order  t o  understand it, some treatment 

of the flow away from the stagnation streamline is necessary.  

will be dealt with following a more  detailed analysis of the flow model. 

Beyond 

This point 

F o r  the case  in which S E  -’/‘ >> 1 we lack simple solutions for the 

We, flow in the deceleration layer  away from the stagnatio-i streamline.  

therefore,  u se  an  integral method with assumed profiles, and we can in 

principle, proceed in two ways. F o r  various shapes of the layer  and loca- 

tions of the dipole we can find the body, and for various bodies we can find 

the layer .  

to  find the shock corresponding to no body. 

Because of its greater  difficulty we use  the la t ter  method O J ~ Y  

The organization of our analysis is as follows: In Section I11 we 

study the flow in  the deceleration layer  near the stagnation streamline.  

Section IV we study the flow in the entire slow flow region. In Section V 

we match these two solutions at the back of the deceleration layer on the 

stagnation streamline,  and reach certain conclusions about the relation be-  

tween S ,  rc and the locations of the body and the dipole. 

will be  c lear  how the ad hoc geometrical assumption of Bush makes the 

problem soluble, and what its implications a r e .  

deceleration layer  away f r o m  the stagnation s t reamline by the momentum 

integral  method. In Section VI1 we discuss the resul ts  of numerical  calcu- 

lations in which the slow flow is matched to the deceleration layer  along its 

ent i re  length f o r  various representative cases. The last section, Section 

VIII, contains conclusions relevant to the analysis as a whole, and a general  

discussion of its validity and implications. 

In 

At this stage it 

In Section VI we study the 
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III. DECELERATION LAYER ANALYSIS IN THE STAGNATION REGION 

We commence our detailed analysis of the flow problem in that par t  

of the deceleration layer  which i s  close to the place where the shock is nor- 

mal. We fix coordinate systems a s  shown in Fig.  2. Taking a s  origin the 

center  of curvature of the shock a t  the point where it i s  normal, we define 

Cartesian coordinates (x, y) such that the undisturbed flow is in  the negative 

x-direction, and polar coordinates ( r , O ) .  * The radius of curvature itself 

is r . The velocity components (u, v) a r e  defined to  be in the direction of 

increasing (r, e) ,  that is, they a r e  based on the polar coordinates measured 

f rom the center  of curvature of the shock. 

some cylindrical body; the distance from the dipole to  the front of the body 

is rb. 

dipole a s  origin. Other dimensions a r e  shown in Fig. 2. 

C 

The dipole i s  located inside 

We define a second system of polar coordinates (R,4) based on the 

We non-dimensionalize all the flow quantities in  accordance with the 

general  picture of the flow i n  the deceleration layer  developed in  the pre-  

ceding section. Thus, the p re s su re  is non-dimensionalized with the f r e e  

* In this section, and in what follows, we shall  descr ibe in  the text the 

cylindrical problem only. 

logical derivation, but differs i n  algebraic detail. Therefore, we have 

relegated to  Appendix A all discussion of this case, and all equations rele-  

vant to  it that differ f rom those of the cylindrical (two-dimensional) case.  

The notations a r e  as nearly identical a s  possible, but some symbols will 

have slightly different meanings for the two cases .  Thus (r, 6) will be used 

for both the spherical  and the cylindrical polar coordinate systems re fer red  

to the center of curvature of the normal part of the shock. Also, we have 

numbered the equations in Appendix A not consecutively, but to correspond 

to the same  equation written for the two-dimensional case,  a s  these will 

be numbered in this and subsequent sections. Finally, where the Figures  

differ for the two cases,  we exhibit both reserving "a" for the cylindrical 

case  and "b" for the axially symmetric case. 

The axially symmetric problem i s  identical i n  

, 

, 
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yt FLOW 

I I I  I I I  

3’ I 

F i g .  2 I l lustrates the coordinate systems used in  the text. C is  the 
center of curvature of the deceleration layer at the point P. 
The components (u ,v)  of the velocity a r e  polar ,  and a r e  r e -  
f e r r ed  to the coordinate system (r ,Q) with origin at C. 
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2 s t ream dynamic pressure,  poouw , the density with the density behind a 

strong shock, p , / ~ ,  all distances with the radius of curvature of the shock, 

r the velocity components in the radial and tangential directions with cuW 

and uw, and the magnetic field with the field at the point where the shock is 

normal  Bo. 
we introduce the expanded coordinate y, defined by 

C’ 

In addition, since the deceleration layer  is of thickness E r  
C’ 

so that In 

the deceleration layer we shall neglect 1/r  compared with a / a r  = ( - l / E r  ) 

( a / & ? ) .  
layer. 

= 0 at  the shock and i s  of order  unity at the back of the layer.  

C 

W e  also neglect the change in the field components across  the 

The energy equation, a s  has already been explained, has for an in- 

tegral  the condition of constant total enthalpy throughout the flow. 

suppose the gas to be so close to  perfect that the enthalpy may be taken to 

be proportional to p/p. 

above, the energy equation reduces to 

We shall 

Then, with the non-dimensionalization described 

2 
p = p ( 1 - v  1 (3 .2 )  

v, B and j a r e  odd functions of 8, and all other quantities a r e  even func- 

tions of 8. Hence, on the stagnation streamline 8 = 0, 
e 

P ‘ P  ( 3 . 3 )  

The equation of continuity is: 

On the stagnation streamline this reduces to  

The quantities appearing in (3. 3) and (3. 5 )  a r e  regarded as functions 

o f ?  only. This method gives the appearance of treating the stagnation 
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streamline by itself, but it is in fact  no different in principle f rom the 
6 methods common in aerodynamics 

Its  advantage l ies  in a c learer  identification of the necessary assumptions. 

involving expansions in  powers of 8.  

The current  (non-dimensionalized with Q U ~ B  ) is  given by: 
0 

EuBe - vBr ( 3 . 6 )  

This is  the appropriate form of Ohm's law. 

On the stagnation streamline we have 

(3.7) 

We shall assume that aB / a 0  is  much l e s s  than E-lBr. This condition im-  

plies only that the dipole is not located right at the back of the deceleration 

layer.  

last section. 

in the deceleration layer to be given on the stagnation s t reamline by: 

e 

It i s  the restriction on the position of the dipole mentioned in the 

A result  of this assumption is that we may take the current  

The radial momentum equation reduces in the deceleration layer to: 

( 3 . 8 )  

pv2 t $$ t SBe V =  0 ( 3 . 9 )  

Note that the only t e r m  proportional to the inertia of the gas to be retained 

in ( 3 . 9 )  is the centrifugal one. 

since in the region under consideration the Mach number is  very low. 

The remaining t e r m s  a r e  all negligible 

Since we may assume B = 1 in this region, on the stagnation s t r eam-  r 
line this gives 

(3.10) 

for which the appropriate integral  is  

p = l  

- 20- 
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Thus, t o  this approximation, the pressure on the stagnation streamline is 

constant. 

streamline.  

F r o m  (3. 3 )  we immediately deduce, a lso for the stagnation 

p = l  (3.12) 

Applying this to  the continuity equation as  written for the stagnation s t ream-  

line, (3. 5) gives 

( 3 .  13) 

As indicated before, we shall a l s o  use  ( 3 .  9) to  deduce the p re s su re  

gradient a t  the back of the shock layer, when we have found a suitable pro- 

f i le  for v. We therefore differentiate it twice with respect to  8, and set  

8 = 0 to find: (since p = 1) 

2 
L e  aBe av 

T (a;2)= -2 (%) -2s aB ae (3 .  14) 

We shall re turn to  this equation in due course. 

equation in the deceleration layer  is: 

The tangential momentum 

p[-+ + t €% t s v  = 0 (3. 15) 

On the stagnation streamline this reduces (after differentiation with 
, 

respect  to  8) to: 
9 

2 L 

- u d  ($) (g) t € q t s s =  0 d r  
(3.  16) 

ae 
As explained before, we can neglect the pressure gradient in this equation 

as long a s  we do not integrate beyond the point where the other t e r m s  be- 
l 
I come comparable to the pressure  gradient. Thus: 

2 
-u & ( - )  -t (s) -t s,, av = 0 ( 3 .  17) 
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This must be solved, together with (3. 13). 

shock are: 

The boundary conditions at the 

U -1, 

We write the equations in the form: 

Hence: 

and 

1 w h e n y  = 0 

-u = [ e -(its)y t S]/( l  t S) 

av -(l tS)Y 
a B = e  

(3 .  18) 

(3. 19) 

(3.20) 

(3.21) 

These equations show the principal features of the behavior of the 

flow in the deceleration layer  as oTltlined in the previous section. 

ward radial velocity tends to the limit S/(1 t S) while the tangential velocity 

decreases without limit as  we approach the back of the layer.  

find the back of the deceleration layer,  we use the profile of (3. 21) in (3 .  16) 

and see at what point the equation is no longer the balance between two 

t e r m s  both l a rge r  than the p re s su re  gradient te rm.  

that we must distinguish two cases: 

The in- 

In order  to  

Substitution shows 

a) If S is small, (3. 16) can be considered as a balance between the 

two convective te rms .  This is the aerodynamic limit. At a distance x 

AE, av/ae x and the p re s su re  gradient becomes important. At  - 2  
this point -u x t S. 

b) If S is la rge  (3.16) can be considered as  a balance between the 

This is the mag- first of the two convective t e r m s  and the magnetic te rm.  

netohydrodynamic limit. At a distance ? = (l tS)"hS/E, S $ = E and 
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-1 the p re s su re  gradient becomes important. 

In that 

case, when 7 *htE-1/2 every t e r m  in (3.16) becomes of order  E .  This 

justifies our ear l ie r  statement that S = 

At this point -u = S(l+S) . 
The boundary between these two cases is when S M 

was the cri t ical  value of S for 

the appearance of a slow flow region. It is important to note that as soon 
~~ 

as  there  is a slow flow region, i. e., a s  soon as S>E1l2, the normal com- 

ponent of the velocity takes up its limiting value S / (  1+S) at the back of the 

deceleration layer defined, for  this case, as the place where av/ae = E / S .  

We calculate next the p re s su re  gradient at the back of the decelera- 
2 2 tion layer, using (3.14). Now a ?/a0 = -2 at  the shock, Y = 0, since 

p cos e. Therefore, integrating: 2 

(3. 22) - e  2 

1i-s 1 t s  -q = 2 t  
ae 

As discussed earlier,  we need only use this p re s su re  gradient a t  the back 

of the layer  where both exponentials a r e  small. We define 

= 2 t -  1x3 + 1 + s  (3. 23) 

The first of these t e r m s  represents the pressure gradient a t  the shock, the 

second is the centrifugal effect, and the third is the magnetohydrodynamic 

effect. F o r  the dipole a s  shown in Fig. 2, 

2 
r 

- - -  - 1  aBe 
S x- 

stag. pt. 

(3. 24) 

If the dipole happens to be at  the center of curvature of the shock, rs = 1. 

As anticipated, we see  that the centrifugal effect is always weakened by the 

presence of a magnetic field, and that the magnetohydrodynamic effect can 

be of either sign depending on whether the field lines in  the deceleration 

layer  appear to diverge from a point ahead of or  behind the center of.curva- 

tu re  of the deceleration layer. 
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In o rde r  to find the remaining details of the deceleration layer,  we 

substitute k for the pressure  gradient in (3.16). As we have seen, this 
will not affect the solution near  the front of the layer, (where - a 2 p/aO 2 = 

2, not k), but is  important at the back, where a 2 p/aO 2 is equal to  k. (3. 16) 

becomes 

-Udr (av)t($)2t ae S m  av - k E  = 0 (3. 25) 

The equations (3. 13) and (3.25) have been integrated by Lykoudis 3 

on the incorrect assumption that k = 3, its aerodynamic value, obtained 

f rom (3.23) by setting S = 0. 

as appropriate. 

We have repeated the integration using (3. 23) 

The cor rec t  stagnation point velocity gradient as a f rac-  
tion of its non-magnetic value ( 3 E )  112 is: 

The stand-off distance A =  ( r  - r )/rc is: c b  

t 1 .  A -  Qo-Ql QO QO 
E ' q 7 q - j  Qo-Ql ' QO-Q1 
- -  

where F is the hypergeometric function, and 

Qo = i S  [(l t - 11 

Ql - - 'Sf(1 2 t a2)1/2 t 11 

(3. 26) 

(3. 27) 

(3. 28) 

The stagnation point velocity gradient ratio i s  plotted in Fig. 3a for  the 

two-dimensional case and in Fig. 3b, f rom (A. 3. 26), for  the axially sym- 

met r ic  case. 

dimensional case  and in  Fig. 4b for the axially symmetr ic  case. 

ferences f rom Lykoudis' calculation a r e  not large when S E  

The stand-off distance i s  plotted in Fig. 4a for  the two- 

The dif- 

is  small, - 1/2 
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a 

0 0  a 1.0 2 0  3.0 

c: a 

4.0 

w a 
t rn 

b I .O 

.8 

.6 

.4 

. 2  

1 2.0 3.0 4.0 

SE-l/2 

Fig.  3 I l lustrates  the reduction i n  the stagnation point velocity gradient 
effected by introducing a magnetic field. The calculation is 
reasonable only a s  f a r  as Sc-1/2 x 1 .  In this as i n  subsequent 
figures,  a is the two-dimensional and b is the axially symmetr ic  
case.  
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Fig. 4 Il lustrates the increase in the shock stand-off distance effected 
by introducing a ma netic field. The calculation i s  reasonable 
only  as far as S ~ - l / s  M 1 ,  The lines marked 1 represent  the 
entire stand-off distance. The lines marked 8 2 give the thick- 
ness  of the deceleration layer defined as extending from the 
shock to the place where -u = S ( l t S ) - 1  i n  the two-dimensional 
case o r  S2(1 tS) -2  in  the axially symmetric case .  All these 
lengths a r e  normalized with respect to the appropriate aero-  
dynamic shock layer thicknesses. 
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The lines on Fig.  3 marked E = 0 correspond exactly to  Lykoudis' calcula- 

tion in  the sense that i f  E = 0, but SE 
k takes its aerodynamic value. Also shown in Fig. 4 a r e  the thicknesses 

of the deceleration layer,  defined a s  the region where 1 2 -u 2 S( 1 + S) 

(for the two-dimensional case). The difference between these two lengths 

is the incipient slow flow region. 

with respect  t o  the aerodynamic stand-off distance, E (  1 - 3 ~ ) - ~ / ~ c o s h ' l ( 3 ~ )  

in the two-dimensional case. It can be seen that with increasing SE-~" ,  the 

deceleration layer  thickness does not change very much, while the total 

stand-off distance grows rapidly. This merely confirms our previous dis-  

cussion in which, for large SE -1/2 we divided the flow into a thin decelera- 

tion layer and a fat slow flow region. 

cipient growth of the slow flow region. It cannot, however, be used, as 

Lykoudis has used it, to determine the distance between the body and the 

shock when SE 

that went into (3.25) f rom which the numbers appearing in  Fig.  4 were  cal-  

culated, a r e  violated as follows in the region -u<S(l+S)-': 

is finite, S must  be zero  and hence - 1/2 

-1 

All the lengths in Fig. 4 a r e  normalized 
-1 12 

Fig. 4 therefore, i l lustrates the in- 

>about 1. The reasons for this a r e  that the assumptions -1/2 

a) The tangential velocity i s  reduced to the same order  of magnitude 

as the radial  velocity, so  that, referring t o  ( 3 . 7 ) ,  the current  i s  no longer 

given by (3. 8). 

b) The fact that the velocity components a r e  equal in  order of mag- 

nitude implies that the scale of the problem is no longer compressed. 

the flow now extends over regions comparable in size in all directions with 

the body, and the p re s su re  gradient can no longer be treated as constant. 

c)  

Thus, 

The deceleration layer can no longer be assumed concentric with 

the body and the dipole. 

To conclude this section, we point o-it that the type of analysis used 

here, in  the magnetohydrodynamic as in the aerodynamic case, gives the 

stand-off distance of the shock in t e rms  of the shock radius of curvature, 

but does not give the radius of curvature of the body. 

radius of curvature we must consider the flow at  greater  distances f rom 

the stagnation streamline. 

To establish the body 
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IV. SLOW FLOW REGION 

We have seen that, when SE -'I2 >>1, there  is a region between the 

deceleration layer  and the body in  which both velocity components are  of 

o rde r  EU,. 

tively constant and f rom ( 3 .  2) 

Since this velocity is strongly subsonic the enthalpy is effec- 

P = P  (4. 1) 

although these quantities will vary considerably through the region. 

note that this isenthalpic motion may involve a considerable r i s e  in the 

entropy. 

momentum and consider the flow t o  be governed by the remains of the mo- 

mentum equation: 

We 

Since the flow is subsonic, we may neglect the convection of 

v p  = S&XE (4. 2) 

The neglect of the inertia t e r m  in  (4. 2) w i l l  resul t  in infinite veloc- 

i t ies ;  these should be interpreted as sonic. The equation of continuity is: 

t 

v . p z  = 0 (4. 3 )  

These equations may be considered to  have been non-dimensionalized just  

as before, with two exceptions. Both components of velocity a r e  now non- 

dimensionalized with respect  to EU,, and distances a r e  re fer red  simply to  

r . 
W e  shal l  find it convenient-to work in the polar coordinates (R ,d )  fixed at 

the dipole and define the radial  and tangential velocity components in these 

coordinates by means of a s t r e a m  function +, non-dimensionalized with r e -  

spect to p,u,rc. 

The cur ren t  now involves contributions f rom both velocity components. 
C 

The components are:  

- -  1 ac l r3  
PR z' P aR (4 .4)  
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We multiply (4. 2) by p = p and find 

(4. 5) 
1 - 2 Vp2 = S(pv h r N  x B) x ,B 

When we substitute f rom (4.4) in  (4.5) we find two l inear  equations (the 

components of 4.5) for the two unknowns p2 and +. 
a r e  

The field components 

and the components of (4. 5) are :  

(4.6) 

(4. 7) 

2R = -s ( .T  cos 4[cos 4 %  8R t - (4.8) 

Multiply (4. 7) by cos 4 , (4. 8) by s in  4 and add: 

This equation implies that p is a function only of 

r s i n 4  
S 

R ? =  

(4.9) 

(4.10) 

This result  s ta tes  only, as might have been seen at once f rom (4. 2), that 

the pressure has a constant value on any field line. 

s in  4 ,  (4.8) by cos 4 and subtract: 

Now multiply (4. 7)  by 

Using the fact  that p = p($, the left hand side of this is equivalent to: 
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"i (rS] R dp2 dq so that 

(4.12) 

2 In view of the fact that dp Bq, like p, is  a function of q alone, we can find 

solutions of (4. 12) of the form 

G satisfies the equation 

A particular solution of this equation may be found in the form 

where g satisfies 

s i n 4  g' + 3  cos4  g = 1 

This has only one solution finite a t  4 = 0 and it is: 

4 - sin 4 cos 4 
g =  3 2 sin 4 

(4. 13) 

(4. 14) 

(4. 15) 

(4. 16) 

4. 17) 

In addition, any function h(q ) satisfies the homogeneous par t  of (4. 14) so 

that the general  solution of the problem is  

$(R,4) = - - - dp2 b:2 - 1 - sin 3 'Os I t h(q)] (4. 18) 
2 sin 4 2s dq 
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This equation tells  us  everything we need to know about the slow flow region. 

We notice in particular that 4 vanishes on three separate  lines: First, on 

the stagnation streamline since (by symmetry) dp/dq vanishes; Second on 

the body where the quantity in  square braces  vanishes. 

t r a r y  any body can be described. 

ally placed field lines for which p vanishes. 

marks ,  let us consider a cylindrical body R = a. 

Since h(q ) is  a rb i -  

Finally, L+ vanishes on the two symmetr ic-  

In o rde r  t o  i l lustrate  these r e -  

We find: 

s in  4 
.(.s a ) + $14 - sin! cos4 I = o  

r 2 s in  4 
S 

(4. 19) 

giving, finally 

1 dp2 R3 
2s dq 2 w , 4  ) = -- - 

r 
S 

- sin cos 4 
1 

2 sin’d 

(4.21) 

A number of interesting conclusions may be drawn from this analysis. 

given the p re s su re  at any point a t  the back of the deceleration layer,  that 

p ressure  obtains for the whole field line passing through the given point. 

The density is similarly determined. Secondly, i f  the p re s su re  gradient 

along the back of the deceIeration layer  is  a l so  given, we can find the com- 

ponent of this gradient ac ross  the field lines, and hence, f rom (4. 21), the 

mass flow out of the shock layer.  In order  to  give a m o r e  concrete idea of 

the type of flow represented by (4 .21)  we have in  Fig.  5 drawn the s t r eam-  

l ines in the slow flow region for a highly idealized (and somewhat art if icial)  

p ressure  distribution and shock shape. 

circular and centered at the dipole; thus R = r 

shock. 

Through the flow field, then, p is given by 

First, 

We assume the shock to be semi-  

= 1 is the equation of the 
2 S 

W e  assume the p re s su re  to  be given by p = cos 4 on the shock. 
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a 

DIPOLE 

b 

STREAMLINES 
--- STREAMLINES 
____- MAGNETIC FIELD LINES 

DIPOLE 

F i g .  5 As explained in the text, this figure is to be regarded a s  i l lus- 
trating a typical flow i n  the slow flow region rather  than repre-  
senting a physically realist ic solution. The streamtubes indi- 
cated by solid lines c a r r y  equal mass  fluxes. 
s t reamlines  a r e  shown in b. 
line + = 0 is also a field line. 
constant on field lines in  the slow flow region. 
connecting the pressure  and density with ‘1, the field line param-  
e t e r ,  a r e  shown. 

Two additional 
In both cases  the limiting s t ream-  

The p res su re  and density a r e  
The formulae 

- 33- 



2 
P = p(q )  = 1 - q  (4. 22) 

The stream function is, 1 We also assume the body to be of radius a = - 2 '  
therefore, given by: 

'' = - )I- sin -' ( 2R ) - sin $ c o s $  t 2R 4*] (4. 23) 

In view of the art if icial  construction of this picture, no significance what- 

ever should be attached to the fact that streamlines entering the slow flow 

region near  the axis appear to leave i t  further round by going back into the 

deceleration layer.  

What is important t o  note f rom this figure, however, is the small role  

which the body plays in determining the whole flow. In fact it is fairly 

c lear  that the body could be reduced in  s ize  without substantially changing 

the flow. Ultimately we can reach the situation where there  i s  no body in 

the flow a t  a l l ;  this corresponds to h(q ) E 0. 

bered that the par t  of the cylinder sketched in Fig. 5 is  in  contact with a 

hot flow, but the gas  density reaches zero  on the limiting field l ines.  

yond these lines the body could be of any shape without affecting the flow 

a t  all. Put another way, Fig. 5 i l lustrates  the manner in which the mag- 

netic interaction can remove large a r e a s  of the body from any contact with 

the flow. This is  clearly a result  of the highest importance in considering 

the heat t ransfer ;  at the s a m e  t ime the resul t  is hot obtainable f rom a con- 

sideration of the flow only in  the vicinity of the stagnation streamline.  

This is not regarded as a likely physical situation. 

Finally it should be r emem-  

Be- 
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V. MATCHING IN THE VICINITY OF THE STAGNATION STREAMLINE 

We can reach useful conclusions concerning the relationships that 

connect S ,  r 

Section IV specialized to  the stagnation streamline 8 =  4 = 0. At the back 

of the deceleration layer the p re s su re  is given for  small values of 8 from 

( 3 .  23) and (3. 24) by: 

and rb by using the results of Section 111 and the resul ts  of 
S 

For  small  8 and 4, the field-line parameter q defined in (4.10) is 

r 2 r8  r 4  S S 

2 

q R 3 -  

R R2 
(5.2) 

and on the shock R = r r = 1. Since, in the slow flow region, p is a 

function of q alone, we can combine (5.1) and (5. 2) to give 
S' 

which i s  valid for small  q, (and therefore for small  d),  but for any r be- 

tween the shock and the body. Next, we specialize the general  solution for  

the s t r eam function in  the slow flow region (4.18) to  the stagnation s t ream- 

line. This gives u-s 

F rom this relation we can find the flow near 8 = 0 all the way f rom the shock 

to the body. 

ity 

In particular, a t  the shock we can calculate the radial  veloc- 

u = -- - 
5:b (5.5) 

~ - 35- 



However, this radial  velocity has a l ready been calculated in  ( 3 .  21).  

just the residual radial  velocity at the back of the deceleration layer .  

we find the important matching condition 

It is 

Thus 

- -  S - $ [$ rs t h(o)] 1 t s  

which yields: 

To  find h(o), we recal l  that the body is  given when + = 0 a s  a resul t  of the 

vanishing of the last bracket i n  (5. 4). Thus: 

Eliminating h(o) between (5. 7) and (5. 8) gives: 

(5.8) 

(5.9) 

This is  the sought after relation between S ,  r and r F r o m  it we can 

make a number of deductions, the most  important of which is the following: 

In a given flight situation (i. e. po3uoo and E given, as well as the magnetic 

moment of the dipole and its location relative to the body), (5. 9) does not 

give unique values for the quantities appearing in  it. 

and r a re  non-dimensionalized with respect  to  r and that r is  a l so  the 

length appearing in  the definition of S. is given; 

then from the geometry we can calculate r 

to Bo , which in  turn  is  proportional t o  the inverse fourth o r  sixth (depend- 

ing on the dimensionality) power of r . 
But this procedure will be valid for any r 

which i s  correct .  

S b' 

We reca l l  that rb 

S C' C 
Suppose some value of r 

C 

However, S is  proportional b' 2 

(5. 9) is then an equation for  rs. 
S 

and there  is no way of knowing 
C' 

One solution to this difficulty i s  by making Bush's ad  hoc 
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assumption r 

the shock. 

cated in  Section 11, we prefer  to deal with this ambiguity by means of a con- 

struction of the flow away f rom the stagnation streamline; while this ap- 

proach is undoubtedly superior f rom the theoretical  point of view, it is 

quite difficult for  various reasons. 

is therefore  not entirely satisfactory. In the end, we shall see, however, 

that the resul ts  of our calculations do not disagree strongly with the assump - 
tion r = 1. We believe that this fact lends grea te r  credibility to  Bush's 

calculations, and at the same time tends to  support the flow model away 

f rom the stagnation region which we shall adopt. 

Returning for  the moment to  (5.9), we measure  the stand-off dis-  

= 1, implying that the dipole is at the center of curvature of 
S 

(5.9) can then be interpreted as an  equation for r As indi- 
C' 

The flow picture that we shall construct 

S 

tance by means of a non-dimensional distance A given by: 

r 
A = -  - -  

'b 
(5.10) S 

S I  
Hence, in t e r m s  of S and r 

(5.11) 

The stand-off distances calculated in this way a r e  not directly comparable 

to the aerodynamic stand-off distance. 

tance is a quantity of order  E while A in  (5.11) is of order  unity. 

a resul t  of the slow flow region having comparable dimensions paral le l  and 

perpendicular to  the flow. 

S = 0 in  (5.11) we recover A = 0. 

For  the aerodynamic stand-off dis-  

This is 

These remarks also explain why, i f  we put 

There  are values of S and rs such that A 4 0 0 .  

4 
3 S 

They satisfy the r e -  

lation 

(5.12) 52  - - s - r  = o 

These values a r e  of particular interest  to us. 

an  infinite distance f rom the shock to the dipole, but ra ther  to  a zero  dis- 

They do not correspond to  
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tance between the body and the dipole rb = 0. 

what we re fer  to a s  the fully magnetohydrodynamic case.  

the body in contact with the flow shrinks to  a point and the entire drag gen- 

erated by the flow field i s  felt by the magnet. 

Thus, they correspond to  

The region on 

We can compare our analytical calculations (for E <<1) up to this 

point with Bush's numerical calculations for E = 1/11 by setting r = 1 in  

the axially symmetric analogue of (5. 1 l), that is ,  in (A. 5. 11). When the 

interaction parameters  a r e  modified to  allow for differences in notation, 

the agreement i s  quite good. 

Bush finds A = C=J fo r  S M 1.53. 

S = 1.90 from (A. 5. 12) with r s  = 1. 

buted to finite E effects. 

S 

In particular, for the axisymmetric case,  

This compares with our value A = C=J for 

The difference can probably be attri- 
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VI. DECELERATION LAYER ANALYSIS AWAY FROM 
THE STAGNATION STREAMLINE 

To study the behavior of the deceleration layer away f rom the stag- 

nation streamline we have to resor t  t o  approximate methods in  the absence 

of analytic solutions. Since we do not know a pr ior i  the shape of the layer 

we have to  introduce a n  a rb i t ra ry  system of coordinates fixed in  the layer. 

This system is shown in Fig. 6. 
parallel  to  the layer. 

sian coordinates fixed at the center of curvature of the normal  par t  of the 

layer. 

n and s a r e  coordinates perpendicular and 

The position of the layer itself i s  re fe r red  to Carte- 

Thus, it i s  given parametrically i n  t e rms  of the a r c  length s by: 

! x = XL (s) 

y = YL (SI 1 
the subscript referring to the layer. Since s is a r c  length we have 

XL 2 t y L  2 = 1 

C 
where dots denote differentiation with respect to  s. 

as the unit of length, xL and yL a r e  given for small  s by: 

Using (as before) r 

1 2  
XL = 1 - 2  s .... 

1 3  
s - 5  s .... - 

YL - 

(6.3) 

u and v a r e  the components of velocity in  the n and s directions. 

thickness of the layer  is on the order  of E r C  we introduce a coordinate 3' 
such that 5 = 0 is at the shock and 

Since the 

, 
I 
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't 
FLOW - 

Fig .  6 I l lustrates  the coordinate system used in  Section V I  of the text. 
C i s  the center of curvature of the deceleration layer  a t  the 
point P. The components (u ,v )  of the velocity a r e ,  respectively, 
i n  the n and s directions. In the text, the length r is  taken to 
be unity. C 

-40- 



Thus, "n is a generalization of the coordinate 

tinuity equation corresponding to  (3.4) i s  

used in Section 111. The con- 

where, as in Section 111, u and v a r e  non-dimensionalized with respect  to  

EU, and u, respectively. The current  i s  effectively given by 

where B This 

expression is  valid until B is comparable with EB where B is  the corn- 

ponent of the magnetic field parallel  t o  the layer. At this point, as we will 

see, the current  no longer affects the dynamics of the layer  appreciably 

and can therefore be neglected. B and B may be regarded as functions 
S n 

of s only, and a r e  given by: 

is the component of the magnetic field normal to the layer. n 

n S' s 

B = k L B x t +  B 
S L Y  

B n = YLBx-;CLBy 
( 6 . 7 )  

where B and B the x and y components of the magnetic field, a r e  given 
X YY 

by 
2 

B X = (2) cos 26 

Y 

The normal  momentum equation becomes 

~ p v ~  t t SvBnB 

( 6 . 8 )  

= o  
S 

( 6 .  9 )  

which is a generalization of (3.  9). 
tion only of s, and i s  given by 

K ,  the curvature of the layer,  is a func- 
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(6. 10) 

The s -momentum equation becomes 

(6. 11) 

which is  a generalization of (3 .  15). 

s ame  as  (3 .  Z ) ,  that is 

Finally the energy equation is just  the 

p = p(l-v2)  (6. 12) 

At the shock, ‘;i = 0, we have the following boundary conditions: 

-jTL; v = -xL (6. 13) * 2  p = l ; p  = y L ;  u = 

A s  indicated ear l ier ,  we lack general  solutions to  these equations. 

quently, we r e so r t  to  a momentum integral  method somewhat analogous to 

that used in  boundary layer  theory. 

Conse- 

W e  introduce the quantities 

I(s)  = JvdZ M ( s )  = JvdX P(s) = fpv2dX (6. 14) 

These quantities measure,  respectively, the current,  mass flux and mo- 

mentum flux in  the deceleration layer .  The integrals a r e  ca r r i ed  from 

the shock Z = 0 to  the effective back of the layer. 

ac ross  the layer  we find 

On integrating (6. 9) 

K P t p M - j T  2 t S B n B s I  = 0 (6. 15) 

where p,( s) i s  the p re s su re  at the back of the deceleration layer.  

subscript indicates that we will use this quantity to  match with our solution 

for the flow in the slow flow region. 

which all the quantities occurring are  functions only of s. 

(6.11) through the layer  gives: 

The 

(6. 15) is, of course, a n  equation in  

Integrating 
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/pu dZ-fpv dZ ' -SB 2 I = 0 
n (6. 16) 

On integrating the f i r s t  t e r m  by parts,  using the continuity equation (6. 5), 

and combining with the second t e r m  we find 

[puv] -J& (pv 2 ) d z  - SB:I 

We can evaluate puv at the shock using (6.13). 

= o  (6. 17) 

A t  the back of the layer  it 

i s  effectively zero since v is reduced to the order  of E a t  that point. Thus: 

2 k y  t P t S B  1 = 0  L L  n (6. 18) 

Rather than evaluate the normal  component of velocity a t  the back of the 

layer,  it i s  convenient to  introduce a s t ream function appropriate t o  the 

layer  defined by: 

(6.19) 

Noting that 4 = yL at the shock, integration of the second equation 

(6.19) g' ive s 

where % is the s t r eam function at the back of the shock layer.  

pM a r e  the two quantities we use  t o  relate the deceleration layer  to  the 

slow flow region. 

% and 

1 
, S = 0, corresponding to the aerodynamic case, we can eliminate P direct-  

An interesting observation to  make on (6.15) and (6.18) i s  that i f  

(6. 21) 

which is just  the Busemann relation8 for the p re s su re  in Newtonian shock 
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layers .  

is  available to us. 

l ayer  in t e r m s  of a shape parameter  6(s) of some kind, so that I, M and 

P can all be expressed as functions of 6(s). The equations (6. 2), (6 .  l o ) ,  

(6. 15), (6. 18) and (6. 19) then reduce to a system of five ordinary differen- 

tial equations for  the six unknowns xL, yL, K ,  6, GM and pM. To complete 

the set  we need to  introduce one further relation, and that is the slow flow 

solution (4.18). 

When the magnetic interaction is  present, no such simple resul t  

We have to  a s sume  profiles for v and p through the 

Along the deceleration layer  we have 

- = B  drl 
ds n 

so  that (4. 18) becomes: 

( 6 .  2 2 )  

The equations described above can be used to solve two fundamentally 

different problems. The first of these, which we cal l  the direct  problem 

(by analogy to a somewhat similar aerodynamic problem) is that i n  which 

the body shape and the dipole location relative to  the body a r e  given. 

required to  find the shape of the shock wave and the deceleration layer .  

second problem, which we call the inverse problem is that in  which the 

shape of the shock wave and deceleration layer  a r e  given, and a l so  the lo- 

cation of the dipole relative to the shock wave. 

body shape. 

l e m s  in the next section, but before proceeding to  these calculations we must  

consider again our model (Section 11) of the flow in  the region away from the 

stagnation streamline. 

layer ,  and we have seen how to join t o  the deceleration layer  a consistent 

slow flow region. 

It i s  

The 

It is  required to find the 

We shall give numerical  examples of both these types of prob- 

We have seen how t o  calculate along the deceleration 

How far can we take this process?  

A s  we proceed along the deceleration layer  pM falls. Eventually 

it will reach zero  at which point the deceleration layer  is fully supported by 

the centrifugal and j x B forces.  

the validity of our calculation. 

ering the component of magnetic field normal  to the deceleration layer.  

Clearly, this point is a natural  limit to 

Another such limit can be found by consid- 

In 
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all reasonable configurations this field component must drop and i t  too will 

eventually reach zero  a t  which point the deceleration layer i s  parallel  to  

the magnetic field. 

PM n 

while B is  finite. 

nation s t reamline reaches the deceleration layer  a t  this point. 

plies that all the slow flow region is exhausted by being forced back into 

the deceleration layer.  

plies that the slow flow is accelerated at  least  to  sonic velocity in  some r e -  

gion near  the back of the deceleration layer. 

oppose this acceleration and therefore, if it exists, i t  must be due to the 

p re s su re  gradient. But i n  Section I11 we saw that a s  long a s  SE -1/2>> 1, the 

j x B force is always grea te r  than the pressure gradient. 

We assume that these two points (i. e. the points where 

and B vanish) coincide. 

In justification of this model, suppose f i r s t  that p 

(6. 23) shows that at this point JIM = 0, that i s  the stag- n 

reaches zero  M 

This im- 

By the definition of the deceleration layer this im- 

But the j x B force would 

The argument 

given there  is directly applicable to  our case a s  long a s  B remains of o r -  
% /. n 

de r  unity. If Bn is of order  E ’ / * ,  however, the effective interaction para- 

me te r  makes S E  

important. But, on our assumption that i s  small, this implies that 

B 

in  which p 

about slow flow gas re-entering the deceleration layer makes part  of Fig.  5 

unacceptable. 

E 

1 in which case  the p re s su re  gradient does become 

is smal l  which i s  contrary to  our hypothesis. Thus we reject  situations n 
goes to  zero before B M n’ Note that the argument given above 

The weakest link in the above argument is the assumption 

<< 1. We shall discuss the implications of finite E in  Section VIII. 

Returning to  our model, suppose on the other hand that B goes to  

F r o m  (6 .23 )  we see that i f  qM i s  to  remain finite (which 
n 

zero  before p 

is physically essential) either dp 

must  vanish. If dpM/ds vanishes for  finite p p goes through a mini- 

mum and s t a r t s  to  increase  again. 

quantity in braces ,  on the other hand, vanishes at the body and cannot 

vanish twice on the same field line. 

M’ 
/ds must vanish o r  the quantity in  braces  M 

M8 

This seems to  be unrealistic. The 

We a re ,  therefore, led (by reductio ad absurdum) to suppose that 

pM and B 

a r e  the consequences of this model? 

question will be given in the next section, it will be useful to  anticipate 

vanish simultaneously and that $M i s  finite a t  that point. What 

While the numerical  answers  to  this 
n 
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cer tain results. n 
i ty becomes infinite. This infinity must be regarded as meaning sonic. 

However, formally speaking, the a r e a  required to  pass  a finite mass at 
infinite velocity is zero  provided the density is  not zero, a condition which 

is  certainly fulfilled for isothermal flow which expands by a factor in 

going from stagnation to  sonic conditions. Therefore, all the slow flow gas 

must  be immediately behind the point where pM and B go to  zero and the 

field line through this point delimits the flow in  the sense that it must  coin- 

cide with + = 0. 

in Section VIII in the light of a more  real is t ic  view of the gas properties.  

At the point where pM and B vanish, the slow flow veloc- 

n 

This point, which has  practical  importance will be reviewed 
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VII. RESULTS OF NUMERICAL CALCULATIONS 

We consider first the choice of profiles to be used in calculating I, 
M and P. W e  introduce the following quantities: 6( s) is an  effective thick- 

ness of the deceleration layer. 4, defined by 

(7.1) 
n 4 = 5  

varies  f rom zero at the shock t o  unity at the back of the layer. W e  let  

Thus, at the shock we have f l (o)  = f (0) = 1. 

layer  v i s  of order  E ,  and thus may be  taken to  be zero, that is f l ( l )  = 0, 

and, f romthe  energy equation (6.12), f 2 (1) = p M' 

tions suffice to  define linear profiles: 

At the back of the deceleration 2 

These boundary condi- 

f l ( 4 )  = 1 - 4 

With these profiles we readily calculate: 
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Before we can use  these for  integration we must  examine their  behavior 

for  small s. Since the l inear profiles do not agree  with the exponential 

profiles calculated in Section 111, we may expect that the start ing condi- 

tions developed in  Section V will have to be  modified. Now for small s, 
1 2  from (6.3), xL N -s, 9 ,  x 1 - s . Thus, writing 6o = 6(0), (6. 18) 

yields: 
1 

6 0  = & (7.9) 

Similarly, for small  s, (6. 15) yields: 

(7.10) 

Substitution from (7. 9) gives 

(7.11) 

which must be, regarded as a n  approximation to  (3.23). 

while there a re  numerical  differences between these formulae, the general  

behavior is  identical. 

It is seen that 

F rom (6. 20) we find, for small s, 

( 7 . 1 2 )  

and, f r o m  (6. 23) 

( 7 .  13) 

where we have a l so  used (5. 8). 

exact result (5.9). 

where  it is seen that no substantial e r r o r s  a r e  involved. 

m o r e  involved profiles would reduce the discrepancies shown in Fig. 7, 

but the increased complexity involved would produce only a small increase  

in accuracy, and add nothing to our general  understanding of the problem. 

This approximate equation replaces the 

The two equations a r e  plotted for comparison i n  Fig. 7 

Presumably, 
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We have chosen two problems fo r  detailed numerical treatment. 

Problem A, characterist ic of the inverse problem, consists of finding the 

shapes of the bodies that go with circular  deceleration layers ,  the dipole 

being offset f rom the center;  Problem B, a direct  problem i s  t o  find the 

deceleration layer that goes with no body. It is felt that this selection is 

typical, and can be expected to  show all the various types of behavior dis-  

cussed in the preceding section. 

Dealing first with problem A, we proceed as follows: We have 

s = 8 S O  that xL, yL, R, 4, B 

t e r m s  of s. With these preliminaries,  (6. 18) is a single first order  dif- 

ferential equation for P(s), while (6. 15), (7.6) and (7.8) introduce the 

auxiliary quantities p I and 6 ( s ) .  When this has been solved, M may be 

found f rom (7.7), qM from (6. 20) ,  and we can then study (6. 23). 

some guessed S and r B reaches zero  when p reaches zero (in accord- 

ance with the discussion in the previous section) we have a valid solution, 

and (6.23)  may be solved for h(T) which gives the body shape. 

and B can all be expressed directly in n S 

M' 
If, for 

s' n M 

The values of S and r which result  f rom these calculations a r e  
S 

shown on Fig. 7 (marked "circular shock"). It i s  noteworthy that, as far 

as the calculation went, a c i rcular  deceleration layer  always corresponded 

to a value of r 

case). 

this range, but a n  explanation along the following l ines seems reasonable: 

If rs = 1, B With centrifugal forces,  the n 
deceleration layer can never reach 8 = T/2 with pM? 0. 

always expect r < 1. On the other hand, i f  B is to  vanish (i. e. layer and 

field become parallel) at an angle like one radian, r 

A second feature to notice in Fig. 7 is  the effect of the cube in (7.13). 

r = . 7  for example; we find r /r 
S b s  

rb/rs = . 75 for S = 1. 

for  which r /r 

tion has an important practical  consequence. 

tion we could imagine the quantity o/p,u, changing by many orders  of mag- 

nitude. 

close to  0 .7  ( these remarks  re fer  to the two-dimensional 
S 

It is not easy to  see  why r should be as insensitive as it i s  over 
S 

= 0 at 8 = $ = 7r/2 as in Fig. 5. 
Therefor e, we 

S n 
cannot be too small. 

S 

Take 

= 0 for S = 1.6, rb/rs = .5 foi- S = 1.4, 

In other words, the range of interaction parameters  

is substantially l e s s  than unity is very small. This situa- 

For  in  s o m e  physical situa- 
b s  

The significance of the cube in (7. 13) is  then that the change f rom 
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quasi-aerodynamic to fully magnetohydrodynamic flow takes place when 

o/poou oo var ies  only by a factor of 2 or  so. 

netohydrodynamic case  is either ''on'' or "off" in any physical situation. 

The cube in  (7.13) becomes a seventh power in (A. 7.13) so that in the 

axially-symmetric case the above remarks apply a fortiori. 

Put another way, the fully mag- 

For  illustrative purposes, in  the intermediate regime, we have 

The one we have chosen has 

The variation of the quantities in the deceleration 

chosen one of the cases  f rom Problem A. 

rb/rs = .5, S = 1.4. 

layer is shown against a r c  length in  Fig .  8. 

are:  pM and B 

indicating that about half the gas that enters the deceleration layer passes 

through into the slow flow region. This point i s  further illustrated in Fig. 

9 where the deceleration layer, streamlines, field lines and body shape 

a r e  all shown. The body shape is re-entrant; this proved to be the case 

for all the circular  shocks studied. 

dr ical  bodies do not go with circular shocks. 

the gas a r e  both 1/4 roughly on the field line q =  .5. In view of the r e -  

marks  in  the previous section it i s  likely that Fig. 9 should not be taken 

too seriously beyond this point. 

s t ream as well as in  the slow flow region; notice the displacement in the 

deceleration layer.  

Points to  notice in this figure 

vanish together to a sufficient degree of accuracy; M M n 

The implication of this i s  that cylin- 

The pressure  and density in  

The streamlines a r e  shown in the f ree  

Turning now to Problem B (no body), the computation i s  somewhat 

different; i n  this case the geometry is initially unknown. 

is a relation between S and r ; it is a question of finding which pair  of V a l  - 
ues S and r satisfying (7.13) with rb = 0, leads (using h ( q )  

eration layer for which p and B vanish simultaneously. The result  of 

the calculation was S = 1.60, r = .72. The variation of the properties 

along the deceleration layer a r e  shown in t e rms  of a r c  length in Fig. 10, 
and the slow flow region and overall geometry a r e  shown i n  Fig. 11. The 

resultant shock shape is, a s  can be seen, nearly circular.  The limiting 

streamline i s  the field line 71 = . 55. The line i s  effectively the limit ( a s  

rb- 0) of the re-entrant body shapes typified by the one shown in Fig .  9. 
The two flows i l lustrated a r e  clearly not very different. 

With rb = 0, (7. 13) 

S 
0) to  a decel- 

S 

M n 

S 

The most  import- 
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a 

b 

F i g .  8 Shows the variation of significant quantities relevant to the 
deceleration layer for a typical value of S in  the range where 
the drag i s  divided between the coil and the body. 
represents  a r c  length along the deceleration layer.  
vanish at the same place to a sufficient degree of accuracy. 

The abscissa  
p~ and Bn 
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a 

b 

S = 1.40 
r,= .70 
rb= .36 

49’ 

S = 1.50 
r,= .67 
rb= .40 

Fig. 9 Represents the streamlines for  a typical mixed MHD aerody- 
namic flow. 
Note the displacement of the streamlines in  the deceleration layer .  
The magnetic field lines a r e  also shown. 
of the shock i s  at the bottom of the figure. 
beyond the field line 
tact  with the flow. 

Equal masses  flow between the streamlines shown. 

The center of curvature 
The shape of the body 

’I = . 54 i s  i r re levant  since it i s  not i n  con- 
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a 

b 

Fig. 10 Shows the variation of the significant quantities relevant to the 
deceleration layer for the fully magnetohydrodynamic case.  
abscissa  represents  a r c  length. 
place to a sufficient degree of accuracy. 
indistinguishable throughout. 

The 
pM and Bn vanish at  the same 

In a they a r e  virtually 
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a 

b 

S = 1.60 
r.= .72 
rD= o 

rJ= .84 
rb= 0 

Fig. 11 Represents the s t reamlines  for the fully magnetohydrodynamic 
flow. Equal masses  flow between the s t reamlines  shown. Note 
the displacement of the streamlines in  the deceleration layer .  
The magnetic field lines a r e  also shown. 
ture  of the shock i s  at the bottom of the figure. 

The center of curva-  
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ant number to emerge from this analysis however, is the value S = 1.60, for 

this i s  the largest  possible value of S; any fur ther  increase  in, say, the 

conductivity o r  magnetic moment of the coil, resul ts  only in a l a rge r  stand- 

off distance, the value of S being unchanged. As in  the case  of Fig. 9, Fig. 

11 should probably be disregarded beyond about q = .5 ,  on which field line 

the pressure  and density a r e  about . 25. Beyond this field line, Fig. 11 

predicts a substantial r i s e  in  velocity (coming together of the s t reamlines)  

indicating that the low Mach number approximation is  no longer valid. 

-56-  



VIII. DISCUSSION AND CONCLUSIONS 

The principal result  of the foregoing analysis i s  that  when (for the 

axially symmetr ic  cas  e) 

s =  1.6 

a flow pattern is se t  up in  which the forces acting on the flow a r e  almost 

entirely magnetic in origin. 

ant only over a negligible a rea  around the stagnation point. 

stration that this type of flow can exist even at low magnetic Reynolds num- 

be r  was one of our principal objectives. On the other hand, the resul t  (8. 1) 

was not achieved without making a number of assumptions nearly a l l  of 

which need closer  examination i f  we a r e  to make a more  accurate  a s s e s s -  

ment of the physical conditions to  which (8. 1) should apply. In this section 

we shall  discuss some of these physical conditions and a l so  mention briefly 

the situation a s  regards  experimental (laboratory) verification of the theo- 

re t ica l  work in  this area.  

Forces  exerted a t  solid surfaces a r e  import-  

The demon- 

We commence with a discussion of the effects of finite ( a s  opposed 

to  vanishingly small)  E.  

in  which case  E 'I4 is about .5.  This obviously cas t s  a shadow on those 

par t s  of the flow picture dependent on 

of the deceleration layer  to the slow flow region near the sonic points. 

feel  however that the effect of finite E will be  one in which things get 

"smeared out" ra ther  than fundamentally changed. Most notably, for finite 

E ,  the slow flow will require  a considerable a r e a  to be passed out at sonic 

speed paral le l  to the magnetic field. However, the distinction between the 

deceleration layer  and the slow flow region is a l so  l e s s  distinct for  l a rge r  

E ,  so that it seems fair to descr ibe the net effect a s  one of "blurring" a 

picture whose sharp  outlines a r e  useful fo r  descriptive and mathematical 

purposes, but not physically realist ic.  

In practical  situations E may be a s  small  as .05  

being small, notably the joining 

We 

We turn  next to  consideration of the Hall effect. When 07 ( W  = eB/m, 
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the electron cyclotron frequency; T = mean f r ee  t ime  between scattering 

collisions for the electrons) is not small, the electric cur ren t  is reduced 

in magnitude and does not flow in the direction of the applied electr ic  field. 

In some simple cases,  the angle between the cur ren t  and the applied field 
-1 is just  tan U T .  However, cases  can a r i s e  in which the angle between the 

current  and the electric field remains small and the magnitude of the cur -  

rent  stays the same even though UT grows to values in excess of unity. 

Jus t  such a case  a rose  in  the paper of Levy and Petschek.4 Here  the Hall 

currents (rollghly the component of the electr ic  cur ren t  perpendicular to 

the electric field) were restr ic ted to  flow in a long narrow region of aspect  

ra t io  E .  This inhibited them to the extent that no important effect was noted 

until UT grew to values in  excess of E 

present geometry; the Hall cur ren ts  would flow, in this case,  throughout 

the slow flow region. 

hold only for values of UT l e s s  than unity. 

flow region UT will r i s e  considerably due to  the decrease in the gas density. 

Thus the Hall effect will limit the sharpness of the boundary to the slow 

flow region. 

so  low that the neutrals can leak past  the ions. The presence of ion slip 

would result  in  some small heat t ransfer  to those par t s  of the surface of 

the body which the ideal theory shows to be not in contact with the hot gas. 

-1 . This case does not occur in  the 

For  this reason, the resul t  (8.1) can be expected to  

Toward the edge of the slow 

A similar effect is ion slip, which occurs when the density is 

A further physical limitation is  that of chemical non-equilibrium. 

At sufficiently low density there  may not be t ime for the ionization processes  

in the g a s  to reach equilibrium. Thus Boyer9 claims that non-equilibrium 

effects make the attainment of substantial interaction parameters  i n  hyper- 

sonic wind tunnel facilities problematical for unseeded air. Fo r  the flight 

case,  it is probably fair to  say that where non-equilibrium effects are  im- 

portant, the density must be so  low as to preclude useful dynamic effects. 

However, it is  difficult to  generalize 03 this subject and we must  usually be 

content with calculating the magnitude of likely effects in any given case. 

A final limitation on the physical realizability of the flows discussed 

in this paper a r i s e s  f rom the following consideration. The gas ahead of the 

strong shock is supposed to  be cold and unionized, a condition which is  c e r -  



tainly met  in  the planetary entry case. 

coil extends substantially beyond the shock and the cold gas therefore "sees" 

an effective electric field. 

field is sufficient to break down the g a s .  

and is discussed at the end of the paper of Levy and Petschek. 

hand arguments can be given to show that breakdown could not occur for 

velocities less than about 5 x 10 

ity. 

possibility of substantial photo ionization in the g a s  ahead of the shock. 

However, the magnetic field of the 

The question a r i s e s  as to whether this electric 

This question i s  quite involved, 

On the one 

6 cm/sec, i. e. about 5 t imes satellite veloc- 

On the other hand, unanswered questions remain having to  do with the 

This comment about photo ionization introduces the subject of rad-  

iant heat t ransfer .  It has been shown, fo r  instance by Goulard, '' that the 

magnetohydrodynamic iriteraction can sometimes increase the radiant heat 

t ransfer  to a body while decreasing the convective heat t ransfer ,  the flow 

conditions remaining fixed. This effect is due to the increased volume of 

hot radiating gas  that is  a consequence of the increase  in the stand-off dis-  

tance. Since in this paper we deal only with the dynamics of the flow, and 

since under ordinary conditions radiation does not affect the dynamics of 

this type of flow we shall not pursue this subject here .  

worth pointing out however, that for  a fixed object re-entry may take place 

at a higher altitude due to dynamic 

to a body could be reduced by causing it to decelerate a t  a higher altitude. 

It does seem 

effects. Thus the radiant heat t ransfer  

W e  conclude by reviewing the status of quantitative experiment in 

the field of low magnetic Reynolds number hypersonic flows. 

in the field by Bush and Ziemer appeared to give good results, but a r e -  

cent article by Cloupeau" appears to throw some doubt on the quantitative 

interpretation of resul ts  achieved in  electromagnetic shock tubes of the 

type used by Bush and Ziemer.  

by Wilkinson13 and Ericson et all4 although neither of these studies ap- 

pears  to have given very good resul ts .  

Locke, Petschek and Rose15 of experimental work performed by them with 

the object of verifying the existence of fully magnetohydrodynamically sup- 

ported hypersonic flows (as predicted by Levy and Petschek ) is forthcom- 

ing. 

negligible physical contact between the hot gas  and solid surfaces.  

Early work 
11 

Work on this subject has a lso been reported 

We understand that a description by 

4 

Prel iminary resul ts  indicate that such flows can be supported with 
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APPENDIX 

Axially Symmetric Case 

The axially symmetric equation of continuity in the shock layer  

is 

and on the stagnation streamline this reduces to  

When p = 1 this gives 

(A. 3 . 4 )  

(A. 3 . 5 )  

(A. 3 . 1 3 )  

The momentum and energy equations a re  Imchanged. 

stagnation streamline proceeds as follows: 

Integration along the 

Hence 

( -  = ( -  + s) (1 + s)- 

(A .  3.19) 

(A.  3. 2 0 )  

The profiles of - u and El v/a 8 as functions of 7 cannot be written explicitly. 

However, we can derive the following implicit expressions: 

(A. 3.  21) 

These profiles resemble their  two-dimensional analogues in  the essential  

respect that a v/a 8 approaches zero  and -u approaches a finite limit ex- 

ponentially. The limit approached by -u is S (1 + S)- . 
' 

2 2 

The arguments given to prove that S E  -'I2 M 1 divides two flow 
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regimes c a r r y  over unchanged to this case. 

gradient in the layer i s  given in t e r m s  of a v/a 8 by: 

The t ransverse  p re s su re  

At the back of the laver  this is: 

In this expression the last two t e r m s  represent  the magneto- 

hydrodynamic effect. F o r  the dipole as shown in F i g .  2 

3 - 2 r  
S - - a - 

2 r S  
a e  

stag. pt .  

(A. 3.  2 4 )  

The aerodynamic ( S  = 0)  value of k is 8 / 3  (A. 3 .  2 3 ) ,  and the reduction in the 

stagnation point velocity ratio i s  therefore: 

(A.  3.  2 6 )  

The non-magnetic stand-off distance is E [lt (86/3)  1/21  - I  and 

A is given by L J - 
t 2; 7 ( A .  3 .  27) 

- “ O I  Ql 

Qof Ql 

Qo- Ql 
f 1, - A -  - - (  1 Qo- Q1 )’F[2, Qof Ql 

QO 1 - Q, Qo- Q1 E 

F is once more  the hypergeometric function. and Q, 

and a are  unchanged. The back of the deceleration layer  is  defined for  the 

a x i a l l y  symmetric case  as the place where -u = S (1 t S)-2,  and this value 

has  been used in constructing F i g .  4b. 

The definitions of Q 
0 

2 

Turning now to the slow flow region in  the axially symmetr ic  

case,  the radial and tangential velocity components are  given in t e r m s  of 

the s t r eam function by: 



( 4 R )  - (+s in4) ,  - - a l a  1 -- 
p R  s in4 a 4 p~ a~ (A. 4. 4)  

Note that this s t r eam function i s  defined like a vector potential, that i s  to 

say,  the mass flow vector is represented a s  the curl  of a vector of magni- 

tude L/J pointing in the azimuthal direction. 

represented not by + = constant, but by R sin$ + = constant. 

definition i s ,  of course,  a rb i t ra ry ,  but the distinction must  be remembered 

when plotting streamlines.  

Thus, the s t reamlines  a r e  

The choice of 

The field components a r e  

The components of (4. 5)  are 

Multiply (A. 4. 7 )  by  COS^, (A.  4.8) by 5 s in4  and add: 

This equation implies that p is a function only of 

r S 2sin24 

T ) =  R 

(A. 4 . 6 )  

(A .  4.7)  

(A.  4.8)  

(A.  4.9)  

(A.  4.10) 

Once again this states only that the pressure  is constant along field lines. 

Now multiply (A. 4.7)  by sind, (A. 4.8) by 1 cos$ and subtract: 

Using the fact  that p = p (  T) ), the left hand side of this i s  equivalent to 

2 L 

-- 1 s in4  ( 2 )  * , so that 
2 d ?  
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In view of the fact that dp'/d?, like p ,  i s  a function of T-, alone, we can find 

solutions of (A. 4.12) of the form: 

(A.  4.13) 

G satisfies the equation: 

i a  (GR)  t- - ( G  sin$) R a R  2~ a$ 

A particular solution of this equation may be found in the form: 

I 
S 

where g satisfies 

sin4 g '  t 13 g cos4 = 2 sin4 

The solution of this equation finite a t  4 = 0 is 

(A.  4.14) 

(A.  4.15) 

(A. 4.16) 

(A.  4.17) 

In addition, any function (R sin4)-'h( T-, ) satisfies the homogeneous par t  of 

(A,  4.14) so that the general solution of the problem is 

In general, '1 h( '1 ) can be chosen so  that any body is given by $I = 0. 

fo rm is chosen so that when $ - 0 the two t e r m s  in the brace behave similarly.  

We res t r ic t  ourselves to a spherical  body R = a,  and find 

This 

2 2  

h ts yn $ )  t s2:4 sin13 t dt = 0 (A.  4.19) 
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f sin -I(?) 

sin13 t ( I it (A. 4. 20) 

If for i l lustrative purposes we assume a hemispherical shock centered at the 

dipole so  that r = 1 and also that p = cos 4 on it, then, through the flow field 
p would be given by 

2 
S 

p = P ( q )  = 1 -  r) ( A .  4. 22)  

The r emarks  concerning F i g .  5a in  the text apply equally to F ig .  5b. Note 

that l ines of constant J1 R sin4 ( r a the r  than constant +) a r e  shown. 

F o r  the axially symmetr ic  case,  matching on the stagnation 

streamline proceeds as follows: the pressure is given f rom (A.  3.23) and 

may be written 

(A. 5.1) 1 2  p m l - ~ k O  

valid at the back of the deceleration layer  for small 8. 

field line parameter  

In this region the 

is  given f rom (A. 4.10) by 

2 1 2  q M rs4 % - e  r 
S 

Hence, 
p ”  l - ~ k  1 r s q  

The stream function in this region is, from (A. 4.18), 

The radial velocity at the shock is  given by: 

( A .  5. 2 )  

(A. 5.3) 

(A. 5.4)  

(A. 5. 5)  
e = o  
r = 1  
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l 

and this must be matched to the back of the shock layer  as given in (A. 3. 21). 

We find 

(A. 5.6)  

This yields: 

7 W J  = 0 (A. 5.7)  21s - [18S t (24rs  t 9)s t 16r S 3 [ 1 t 
r 

3 2 

S 

The body is given by: 
4 2 

r 

rb 

h(o)  = 0 - t 3  'b S 
7 (A. 5.8)  

and, therefore , 
(A.  5 .9 )  

2 21S3 - [18S t (24rs t 9 )  S t 16rs] [ 1 - 

A ,  defined a s  in (5.10) i s  given by 

I 

-1 (A. 5.11) 21 s3 
18S2 t (24rs  t 9 ) s  t 16rs 

I The fully magnetohydrodynamic case is given by: 

(A.  5.12) 
3 2 

21s - 18s - (24rs t 9 ) s -  16rs = 0 

For  the special assumption r = 1, this equation has  the root S = 1. 90. 
S 

Turning now to the axially symmetr ic  deceleration layer  away 

f r o m  the stagnation streamline,  the n and s coordinate system (Fig.  6 )  is 

unchanged, and equations (6.1) through (6.4)  remain valid. 

continuity, however , now reads 

The equation of 

(A. 6.5)  

The field components Bs and B 
but B and B a r e  now given by: 

a r e  given in  t e r m s  of Bx and B 
n Y 

by (6.  7) ,  

X Y 
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Bx -l(kY(l - 3  t 3 C O S 2 4 )  

(A. 6 .8 )  

All the equations ( 6 . 9 )  through (6.16) ca r ry  over unchanged to the axially 

symmetr ic  case ,  including the important definitions (6.14), and the integrated 

normal momentum equation (6.15). 

equation (A.  6.5)  

(6.16) becomes, on using the continuity 

2 ( P y )  t S B n I  = O  L GLGL t - - ds  YL 

We define the s t r eam function by: 

(A. 6.18) 

(A.  6.19) 

and integration of the second equation (A.  6.19) 1 At the shock, 4 = 

through the layer  yields 
yL, 

(A. 6. 20) 

The axially symmetr ic  Busemann relation is found f rom (6.15) and (A.  6.18) 

by setting S = 0 

PM = Y - 2  '- {jL+LyL d s  
YL 

0 

(A. 6. 21) 

On the deceleration layer ,  using 77 as given by (A.  4.10) we find: 

J =  d - 2R s in4  B~ ds  r 
S 

sin13 t dt  

sin 4 14 

so that (A. 4.18) becomes 

4 pM dpM 
4M - - -  - SB n - ds  [ -  

(A. 6. 22 )  

(A.  6 .  23) 
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F o r  the numerical calculations, equation (7.1) through (7. 8 )  a r e  unchanged 

in the axially symmetr ic  case.  However, (A.  6.18) yields: 

(A.  7 . 9 )  2 6 = -  
0 s t 2  

(6.15) yields: 

k = 2 + 6  0 [ $ + s  (%-I)] 
Substitution f rom ( A .  7. 9 )  gives 

2 s  k = 2 t -  s t 2  4/3 + - s + 2  [+ -q  
(A.  7.10) 

(A.  7.11) 

which should be compared with ( A .  3. 23). F r o m  ( A .  6. 20), for  small s ,  we 

1 - s  2 
find 

S * M M  -2 

and from (A.  6. 23) 
2 

21s - (32rs t 18s) 

7 

1 -($) 
( A .  7.13) and (A.  5 . 9 )  a r e  compared in Fig. 7b. 
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